Switching of Routing Algorithms in Wireless Networks for Fire Fighting

Chunlei An, Yunqi Luo and Andreas Timm-Giel

Oct. 19, 2012

Outline

- Problem Statement
- Proposed Adaptive Routing Framework
- Analytical Model for Switching of Routing Algorithms
- Conclusions and Future Work

Fire Fighting Scenario

- A building is on fire
- Some fire fighters are in operation
- Rest of the fire fighters stay outside as backup
- All sensor data should be sent to the command post

Classification of Routing Algorithms

- Mobile Ad-hoc Network (MANET)
- Proactive
 - Maintain routes all the time
 - Difficult to cope with mobility
- Reactive
 - On demand
 - Inefficient if the traffic is low and route response time is important
- Hybrid
 - Try to integrate the advantages of both proactive and reactive routing

Problem Statement

- Heterogeneous network
- Objective:
 - Best routing performance
- Static nodes: low dynamic → stable connectivity → proactive routing, like
 Optimized Link State Routing (OLSR)
- Mobile nodes: high dynamic → instable connectivity → reactive routing, like Ad-hoc On-demand Distance Vector (AODV)
- Solution:
 - A self adaptive routing protocol, which allows coexistence of different routing algorithms in a network.

Focus of This Presentation

- Propose a self adaptive routing framework
- Develop decision algorithms based on analytic performance evaluation models of ad hoc routing protocols from literature

Environments		4	Applications		
Neighbor Detection	Mobility Detection	Traffic Detection		Quality of Service	

- Reactive routing as the default algorithm
- Each node may apply different routing algorithms to different neighbors
 - Through monitoring the change of its neighbor list
 - Frequent change means high dynamic \rightarrow reactive routing
 - Infrequent change implies low dynamic → proactive routing

Challenge: When to switch?

Cost Functions for Switching of Algorithms

Objective:min(Cost)

 $Cost = \alpha Cost_{Switch} + \beta Cost_{Algorithm}$

$$Cost_{Switch} = f_{s}^{Switch}(Overhead_{Switch}^{CtrlMsg})$$

$$Cost_{Algorithm} = f_s^{Algorithm}(Overhead_{Algorithm}^{CtrlMsg}(t))$$

(1) Reduce the overall cost

- (2) Cost for algorithm and cost for switching
- (3) Switching cost in terms of number of control messages
- (4) Routing algorithm cost in terms of number of control messages

Future: other metrics are to be considered, such as packet loss rate, end to end delay, etc.

	Reactive	Proactive
Fixed	$\lambda o_r N^2$	$h_p N + o_p t_p N^2$
Mobility	$o_r \mu a L N^2$	$o_p \mu A N_p N^2$

Network Parameters		
Ν	Number of nodes	
μ	Link break rate (mobility)	
L	Average length of a route	

Reactive P	rotocol	Parameters

h_r	Hello rate (0 when possible)
0 _r	Route request optimization factor

[1] Viennot, L., Jacquet, P., Clausen, T.H.: "Analyzing Control Traffic Overhead versus Mobility and Data Traffic Activity in Mobile Ad-hoc Network Protocols", Wirel. Netw. 10(4), 447455 (Jul 2004)

Data Traffic Parameters

- λ Route creation rate per node
- Average number of active а routes per node (activity)

Proactive Protocol Parameters

h_p	Hello rate
t_p	Topology broadcasting rate
o_p	Broadcast optimization factor
AN _p	Average number of active next hops

	Reactive	Proactive
Fixed	$\rightarrow \lambda o_r N^2$	$h_p N + o_p t_p N^2$
Mobility	$o_r \mu a L N^2$	$o_p \mu A N_p N^2$

$O_{\gamma}\lambda NN$

Number of route requests

Every node broadcasts it once

Reduce number of broadcasting

Reactive Protocol Parameters

h_r	Hello rate (0 when possible)
0 _r	Route request optimization factor

[1] Viennot, L., Jacquet, P., Clausen, T.H.: "Analyzing Control Traffic Overhead versus Mobility and Data Traffic Activity in Mobile Ad-hoc Network Protocols", Wirel. Netw. 10(4), 447455 (Jul 2004)

Data Traffic Parameters

- λ Route creation rate per node
- *a* Average number of active routes per node (activity)

Proactive Protocol Parameters

h_p	Hello rate	
t_p	Topology broadcasting rate	
<i>o</i> _p	Broadcast optimization factor	
AN _p	Average number of active next hops	บ
	12 Complets M	J

	Reactive	Proactive
Fixed	$\lambda o_r N^2$	$h_p N + o_p t_p N^2$
Mobility	$\rightarrow o_r \mu a L N^2$	$o_p \mu A N_p N^2$

o_rμaNLN

Number of routes Number of active links Number of link breaks Each node broadcasts each link break once

Reactive Protocol Parameters

h_r	Hello rate (0 when possible)
0 _r	Route request optimization factor

[1] Viennot, L., Jacquet, P., Clausen, T.H.: "Analyzing Control Traffic Overhead versus Mobility and Data Traffic Activity in Mobile Ad-hoc Network Protocols", Wirel. Netw. 10(4), 447455 (Jul 2004)

Data Traffic Parameters

- λ Route creation rate per node
- a Average number of active routes per node (activity)

Proactive Protocol Parameters

h_p	Hello rate
t_p	Topology broadcasting rate
o_p	Broadcast optimization factor
AN _p	Average number of active

	Reactive	Proactive
Fixed	$\lambda o_r N^2$	$\rightarrow h_p N + o_p t_p N^2$
Mobility	ο _r μaLN ²	$o_p \mu A N_p N^2$

$$h_p N + o_p t_p N N$$

Each node sends hello messages Each node broadcasts its topology Topology is broadcasted through the network

Reactive Protocol Parameters

h_r	Hello rate (0 when possible)
0 _r	Route request optimization factor

[1] Viennot, L., Jacquet, P., Clausen, T.H.: "Analyzing Control Traffic Overhead versus Mobility and Data Traffic Activity in Mobile Ad-hoc Network Protocols", Wirel. Netw. 10(4), 447455 (Jul 2004)

Data Traffic Parameters

- λ Route creation rate per node
- a Average number of active routes per node (activity)

Proactive Protocol Parameters

h_p	Hello rate
t_p	Topology broadcasting rate
o_p	Broadcast optimization factor
AN_p	Average number of active
	next hops
	a- Rominieus II

1

	Reactive	Proactive
Fixed	$\lambda o_r N^2$	$h_p N + o_p t_p N^2$
Mobility	o _r µaLN ²	$\implies o_p \mu A N_p N^2$

$$o_p \mu A N_p N N$$

Number of active links Number of link breaks Each node broadcasts the link break once

Reactive Protocol Parameters

h_r	Hello rate (0 when possible)
0 _r	Route request optimization factor

[1] Viennot, L., Jacquet, P., Clausen, T.H.: "Analyzing Control Traffic Overhead versus Mobility and Data Traffic Activity in Mobile Ad-hoc Network Protocols", Wirel. Netw. 10(4), 447455 (Jul 2004)

Data Traffic Parameters

- λ Route creation rate per node
- a Average number of active routes per node (activity)

Proactive Protocol Parameters

h_p	Hello rate
t_p	Topology broadcasting rate
o_p	Broadcast optimization factor
AN_p	Average number of active
	next hops
	AC COMPLETS I

	Reactive	Proactive
Fixed	$\lambda o_r N^2$	$h_p N + o_p t_p N^2$
Mobility	<mark>0</mark> rμaLN ²	$o_p \mu A N_p N^2$

Networ	k Parameters
Ν	Number of nodes
μ	Link break rate (mobility)
L	Average length of a route

Reactive	Protocol Parameters
h_r	Hello rate (0 when possible
0 _r	Route request optimization factor

[1] Viennot, L., Jacquet, P., Clausen, T.H.: "Analyzing Control Traffic Overhead versus Mobility and Data Traffic Activity in Mobile Ad-hoc Network Protocols", Wirel. Netw. 10(4), 447455 (Jul 2004)

Data Traffic Parameters

- Route creation rate per node λ
- Average number of active а routes per node (activity)

Proactive Protocol Parameters

h_p	Hello rate	
t_p	Topology broadcasting rate	
o_p	Broadcast optimization factor	
AN _p	Average number of active next hops	L L
	17 Complets M	IJ

- Scenario
 - 50 Nodes in the area of 1500x300 meter
 - − Random Waypoint mobility, different pause time
 → Mobility
 - Different number of source nodes (10, 20 or 30)
 → Activity
- Assumptions
 - No congestion occurs in the network
 - Average link break rate is constant
 - The network always remains connected

[2] J. Broch, D.A. Maltz, D.B. Johnson, Y.-C. Hu, and J. Jetcheva. A performance comparison of multi-hop wireless ad hoc network routing protocols. In MobiCom'98, October 1998. Dallas.

Parameter Determination

AODV

- $o_r \mu a L N^2 + \lambda o_r N^2 = 16100x + 5$
- $x = \mu a$
- $o_r = 16100/(LN^2)$

OLSR: Control packets per second vs. μ

OLSR

- $o_p \mu A N_p N^2 + h_p N + o_p t_p N^2 = 749 + 66$
- $x = \mu$
- $o_p A N_p = 749/N^2$
- $o_p = 66/(t_p N^2)$

Routing Overhead Comparison - Analytic

OLSR

- Routing overhead vs. mobility and activity
- AODV has lower overhead when activity is low
- OLSR outperforms AODV when activity increases

• $o_p \mu A N_p N^2 + h_p N + o_p t_p N^2$

AODV

 $o_r \mu a L N^2 + \lambda o_r N^2$

Costswitch: Algorithm Switching Cost

 $Objective:\min(Cost)$ $Cost = \alpha Cost_{Switch} + \beta Cost_{Algorithm}$ $Cost_{Switch} = f_{s}^{Switch}(Overhead_{Switch}^{CtrlMsg})$ $Cost_{Algorithm} = f_{s}^{Algorithm}(Overhead_{Algorithm}^{CtrlMsg}(t))$

- Node joins or leaves a proactive sub-network
 - Broadcast through the subnetwork
- Switching cost is determined by the proactive routing algorithm

Conclusions and Future Work

- Conclusions
 - Propose self adaptive routing framework
 - Adapt an analytical model based on cost functions
 - Provide detailed expressions for Cost_{Algorithm}
 - Estimate depending on protocol and scenario
- Future Work
 - Determine the scaling factors o_r and o_p analytically
 - Adapt the parameters to typical fire fighting scenarios

Question?

