VoIP-Kapazität im Relay erweiterten IEEE 802.16 System

21. ComNets-Workshop Mobil- und Telekommunikation

Dipl.-Ing. Karsten Klagges

ComNets Research Group RWTH Aachen University

16. März 2012

Outline

Relay stations in IEEE 802.16

Motivation Resource Management Model

Simulator and Models

Simulator Architecture VoIP model

Performance Evaluation

Simulation Scenario Results

Conclusion

Benefits

- Coverage of heavily shadowed areas
- Serving low performing MSs at the edge of the cell
- Trunking gain on back-haul link
- ► SDM operation of relay stations → capacity gain

Potential Challenges

- Increased packet delay over single-hop system
- Load balancing among relay stations
- Resource partitioning UL/DL

Single-hop TDD Frame

Figure: Single-hop Frame Structure

- 20 ms periodic superframe
- Partition of frame in downlink (DL)- and uplink (UL) access zone
- Subdivision into sub-frames (SF)
- base station (BS) performs radio resource management and signals at the beginning of a frame (not shown)

Multi-hop TDD Frame

Figure: Relay Enhanced Frame

- ▶ Partition of frame in DL- and UL access and relay zone
- RS communicates with BS in relay zone
- RS performs radio resource management in relay cell

Relay stations in IEEE 802.16
Motivation
Resource Management Model

Simulator and Models Simulator Architecture VoIP model

Performance Evaluation
Simulation Scenario
Results

Conclusion

Figure: Simulator Architecture

- Simulator core provides
- Nodes contain protocol stack
- Communication between nodes via RISE

ComNets

Figure: Brady VoIP model

Codec	RTP AMR 12.2 (12.2 kb/s)
Encoder frame length	20 ms
Voice frame size	320 bit
Silence indicator inter arrival time	160 ms
Silence indicator frame size	120 bit
State update interval	20 ms
Voice activity factor	50 %
Mean talk spurt length	2 s

WiMAC MAC Layer

Figure: WiMAC MAC/PHY Layer

WiMAC MAC Layer of Relay Station

Figure: WiMAC MAC/PHY Layer

Resource Management Model

Simulator Architecture

Performance Evaluation Simulation Scenario Results

- 3 sectors/cells each site
- 7 sites
- 500 m inter-site distance
- 3 relay stations per cell
- up to 75 mobile stations (MSs) per cell
- combined LOS/NLOS urban macro pathloss model
- ▶ LOS pathloss model for BS ↔ RS link

Figure: Simulation scenario

System parameters

- 5 MHz bandwidth
- DL/UL resource ratio 5:18 with RSs.
- DL/UL resource ratio 12:11 without RSs
- Frequency reuse 1

station	TX power
BS	43 dBm
RS	24 dBm
MS	24 dBm

RSs do not affect the cell capacity

Packet Delay

- DL packet delay is not critical
- UL packet delay shows significant decrease with RSs

Channel estimation error

Channel estimation error is unaffected by RSs

Number of DL transmissions for

Number of UL transmissions for successful delivery

RSs reduce the amount of retransmissions.

User Data SINR distribution

RS provide a significant gain in user data SINR for UL and DL

60

Conclusion

Benefits of relay stations

- Relays improve channel knowledge for UL transmissions
- Relays provide same DL quality of service with less resources
- Even low-powered relay stations improve system performance

Open issues

- Packet delay must be limited by packet prioritization
- Load balancing among RSs is not possible

Thank you kks@comnets.rwth-aachen.de