Modeling of Partially Overlapping Wireless Personal Area Networks

21. ComNets-Workshop Mobil- und Telekommunikation

Dipl.-Ing. Holger Rosier

March 16, 2012

ComNets Research Group RWTH Aachen University, Germany

Contents

- Motivation
- Medium Access Control (MAC) protocols in Wireless Personal Area Networks
- Channel Reuse
- Modeling DRP & PCA
- Scenario & Results
- Conclusion

Motivation

- Today's Consumer Electronic (CE) devices are equipped with wireless interfaces (WLAN, Bluetooth, Wireless USB)
- CE Special Interest Group (CE SIG) expects six or even more Wireless Networks within the home environment
- Current contention based MAC protocols do not use channel resources efficiently
- Problem especially in dense urban scenarios
 - Scarce radio resources

 in license-exempt frequencies
 require spectrum efficient
 MAC Protocols

Medium Access Control

TDMA: Time Division Multiple Access

TDMA: Time Division Multiple Access EDCA: Enhanced Distributed Channel Access

TDMA: Time Division Multiple Access EDCA: Enhanced Distributed Channel Access PCA: Prioritized Contention Access

TDMA: Time Division Multiple Access EDCA: Enhanced Distributed Channel Access PCA: Prioritized Contention Access DRP: Distributed Reservation Protocol

Prioritized Contention Access Protocol (PCA)

- Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) Protocol derived from IEEE 802.11e
- Station chooses Backoff Counter (BC) uniformly from Contention Window (CW₀ = 0,...,CW_{min})
- BC is decremented as long as medium is sensed "idle"
- BC is on hold, if medium is sensed "busy"
- BC is zero, channel access is granted for Transmission Opportunity (TxOP) duration
- CW is doubled every time a collision has occured (CW_i= 2ⁱCW_{min}), i ∈ (0,...,m_{max})

Prioritized Contention Access Protocol (PCA)

- Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) Protocol derived from IEEE 802.11e
- Station chooses Backoff Counter (BC) uniformly from Contention Window (CW₀ = 0,...,CW_{min})
- BC is decremented as long as medium is sensed "idle"

Carrier Sense

- BC is on hold, if medium is sensed "busy"
- BC is zero, channel access is granted for Transmission Opportunity (TxOP) duration

Prioritized Contention Access Protocol (PCA)

- Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) Protocol derived from IEEE 802.11e
- Station chooses Backoff Counter (BC) uniformly from Contention Window (CW₀ = 0,...,CW_{min})
- BC is decremented as long as medium is sensed "idle"
- BC is on hold, if medium is sensed "busy"
- BC is zero, channel access is granted for Transmission Opportunity (TxOP) duration
- CW is doubled every time a collision has occured (CW_i= 2^iCW_{min}), i \in (0,...,m_{max})

Collision Avoidance

Distributed Reservation Protocol (DRP)

- Sender & receiver negotiate Medium Access Slots (MASs)
- ECMA-368 specifies Beacon Protocol for synchronization & broadcasting management information
- Reservations are announced in Beacons
- Stations in 2-hop neighborhood defer from channel access as long as sender & receiver repeat the announcement
- Data frames are sent in reserved MASs without competition

BS – Beacon Slot MAS – Medium Access Slot ACK – Acknowledgement TxOP – Transmission Opportunity SIFS – Short Interframe Space

- DRP: individual 1-Hop neighborhood is called Beacon Group (BG)
- MAS reservation is protected, if Beacon is decoded
- PCA: Station stops decrementing BC, if transmission is detected
- Carrier Sense Range typically exceeds Beacon Range
- Channel reuse PCA: Distance between stations greater Carrier Sense Range
 - Reuse depends on random channel access
- Channel reuse DRP: Distance between stations greater Beacon Range
 - Reuse depends on coordinated channel access
- Hypothesis: DRP yields higher channel reuse gain than PCA

- DRP: individual 1-Hop neighborhood is called Beacon Group (BG)
- MAS reservation is protected, if Beacon is decoded
- PCA: Station stops decrementing BC, if transmission is detected
- Carrier Sense Range typically exceeds Beacon Range
- Channel reuse PCA: Distance between stations greater Carrier Sense Range
 - Reuse depends on random channel access
- Channel reuse DRP: Distance between stations greater Beacon Range
 - Reuse depends on coordinated channel access
- Hypothesis: DRP yields higher channel reuse gain than PCA

- DRP: individual 1-Hop neighborhood is called Beacon Group (BG)
- MAS reservation is protected, if Beacon is decoded
- PCA: Station stops decrementing BC, if transmission is detected
- Carrier Sense Range typically exceeds Beacon Range
- Channel reuse PCA: Distance between stations greater Carrier Sense Range
 - Reuse depends on random channel access
- Channel reuse DRP: Distance between stations greater Beacon Range
 - Reuse depends on coordinated channel access
- Hypothesis: DRP yields higher channel reuse gain than PCA

–User Data Transmission — Beacon Transmission

- DRP: individual 1-Hop neighborhood is called Beacon Group (BG)
- MAS reservation is protected, if Beacon is decoded
- PCA: Station stops decrementing BC, if transmission is detected
- Carrier Sense Range typically exceeds Beacon Range
- Channel reuse PCA: Distance between stations greater Carrier Sense Range
 - Reuse depends on random channel access
- Channel reuse DRP: Distance between stations greater Beacon Range
 - Reuse depends on coordinated channel access
- Hypothesis: DRP yields higher channel reuse gain than PCA

–User Data Transmission — Beacon Transmission

- DRP: individual 1-Hop neighborhood is called Beacon Group (BG)
- MAS reservation is protected, if Beacon is decoded
- PCA: Station stops decrementing BC, if transmission is detected
- Carrier Sense Range typically exceeds Beacon Range
- Channel reuse PCA: Distance between stations greater Carrier Sense Range
 - Reuse depends on random channel access
- Channel reuse DRP: Distance between stations greater Beacon Range
 - Reuse depends on coordinated channel access
- Hypothesis: DRP yields higher channel reuse gain than PCA

- DRP: individual 1-Hop neighborhood is called Beacon Group (BG)
- MAS reservation is protected, if Beacon is decoded
- PCA: Station stops decrementing BC, if transmission is detected
- Carrier Sense Range typically exceeds Beacon Range
- Channel reuse PCA: Distance between stations greater Carrier Sense Range
 - Reuse depends on random channel access
- Channel reuse DRP: Distance between stations greater Beacon Range
 - Reuse depends on coordinated channel access
- Hypothesis: DRP yields higher channel reuse gain than PCA

- DRP: individual 1-Hop neighborhood is called Beacon Group (BG)
- MAS reservation is protected, if Beacon is decoded
- PCA: Station stops decrementing BC, if transmission is detected
- Carrier Sense Range typically exceeds Beacon Range
- Channel reuse PCA: Distance between stations greater Carrier Sense Range
 - Reuse depends on random channel access
- Channel reuse DRP: Distance between stations greater Beacon Range
 - Reuse depends on coordinated channel access
- Hypothesis: DRP yields higher channel reuse gain than PCA

- DRP: individual 1-Hop neighborhood is called Beacon Group (BG)
- MAS reservation is protected, if Beacon is decoded
- PCA: Station stops decrementing BC, if transmission is **detected**
- Carrier Sense Range typically exceeds Beacon Range sense
- Channel reuse PCA: Distance between stations greater Carrier Sense Range
 - Reuse depends on random channel access
- Channel reuse DRP: Distance between stations greater Beacon Range
 - Reuse depends on coordinated channel access
- Hypothesis: DRP yields higher channel reuse gain than PCA

- DRP: individual 1-Hop neighborhood is called Beacon Group (BG)
- MAS reservation is protected, if Beacon is decoded
- PCA: Station stops decrementing BC, if transmission is **detected**
- Carrier Sense Range typically exceeds Beacon Range sense
- Channel reuse PCA: Distance between stations greater Carrier Sense Range
 - Reuse depends on random channel access
- Channel reuse DRP: Distance between stations greater Beacon Range
 - Reuse depends on coordinated channel access
- Hypothesis: DRP yields higher channel reuse gain than PCA

23

Model PCA Performance Literature

- [1] is often cited publication for modeling IEEE 802.11 performance
- Assumption: each station is in mutual Carrier Sense Range
- Solving a two-dimensional Markov chain leads to [1]:

$$\tau = \frac{2(1-2p)}{(1-2p)(W+1) + pW(1-(2p)^m)} (1.1)$$

$$p = 1 - (1-\tau)^{n-1} (1.2)$$

• System throughput is [1]:

$$S = \frac{P_s P_{tr} L}{(1 - P_{tr})\sigma + P_s P_{tr} T_s + P_{tr} (1 - P_s) T_c} (1.3)$$

- au Transmission probability
- p Collision probability
- W Minimum Contention Window
- n Number of Stations
- m Maximal Backoff stage
- \boldsymbol{S} System throughput
- $P_{\rm s}$ Conditonal probability of successful transmission
- L Frame lenght [bit]
- T_s Frame Transaction duration
- T_c Time wasted in collision
- Next: stations not in mutual Carrier Sense Range
- Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination function. Selected Areas in Communications, IEEE Journal on, mar 2000

Enhanced PCA Performance Model

• Probabilities become station dependent τ_i , p_i , P_{s_i} , P_{tr_i} , n_i , with $i \in (0,..,N-1)$ N - Number of stations

Enhanced PCA Performance Model

- Probabilities become station dependent τ_i , p_i , P_{s_i} , P_{tr_i} , n_i , with $i \in (0, ..., N-1)$ N - Number of stations
- Eq. (1.1) becomes:

$$\tau_i = \frac{2(1-2p_i)}{(1-2p_i)(W+1) + p_iW(1-(2p_i)^m)}$$
(1.4)

Eq. (1.2) becomes:

$$p_i = 1 - (1 - \tau_i)^{n_i - 1}$$
 (1.5)

Eq. (1.3) considering TxOP length becomes:

$$S = \sum_{i=0}^{N-1} \frac{LN_{f} P_{s_{i}} P_{tr_{i}}}{(1 - P_{tr_{i}})\sigma + P_{s_{i}} P_{tr_{i}} T_{TxOP} + P_{tr_{i}} (1 - P_{s_{i}}) T_{c}}$$

$$= \frac{L}{T_{ft}} \cdot \sum_{i=0}^{N-1} \frac{N_{f} T_{ft} P_{s_{i}} P_{tr_{i}}}{(1 - P_{tr_{i}})\sigma + P_{s_{i}} P_{tr_{i}} T_{TxOP} + P_{tr_{i}} (1 - P_{s_{i}}) T_{c}} = \frac{L}{T_{ft}} \cdot k_{PCA}$$
(1.6)

- τ_i Transmission probability
- p_i Collision probability
- W Minimal Contention Window
- n_i Number of Stations
- *m* Maximal Backoff stage

- *S* System throughput
- P_{si} Conditonal probability of successful transmission
- L Frame length [bit]
- 6) T_{TxOP} TxOP duration T_c Time wasted in collision
 - N_f Number of frames in TxOP
 - T_{ft} Frame Transaction duration
- Eqs. (1.4), (1.5) are solved numerically by Monte Carlo Experiment

Model DRP Performance

- Contention free channel access: No performance degradation through collisions
- Beacon overhead depends on number of stations, neglected in the following: 45 stations in fully meshed network, approx. 6%
- Assumptions: optimal channel resource (re-)use

Scenario

- 2, 5, 9 overlapping Wireless Personal Area Networks (WPANs)
 Stations within a WPAN are placed in mutual decoding range
- 5 Stations are randomly placed in each WPAN (250 seeds)
- Center distance (d) between WPANs is increased
- For each distance, k_{drp} and k_{pca} are calculated by Monte Carlo Experiment
- Beacon Range: 14m
- MCS: 160Mb/s
- Frame Length: 1500B
- PCA related parameters:
 - CW_{min}: 16
 - CW_{max}: 1024
 - DIFS: 46µs
 - TxOP: 512µs

Scenario

- 2, 5, 9 overlapping Wireless Personal Area Networks (WPANs)
 Stations within a WPAN are placed in mutual decoding range
- 5 Stations are randomly placed in each WPAN (250 seeds)
- Center distance (d) between WPANs is increased
- For each distance, k_{drp} and k_{pca} are calculated by Monte Carlo Experiment
- Beacon Range: 14m
- MCS: 160Mb/s
- Frame Length: 1500B
- PCA related parameters:
 - CW_{min}: 16
 - CW_{max}: 1024
 - DIFS: 46µs
 - TxOP: 512µs

Scenario

- 2, 5, 9 overlapping Wireless Personal Area Networks (WPANs)
 Stations within a WPAN are placed in mutual decoding range
- 5 Stations are randomly placed in each WPAN (250 seeds)
- Center distance (d) between WPANs is increased
- For each distance, k_{drp} and k_{pca} are calculated by Monte Carlo Experiment
- Beacon Range: 14m
- MCS: 160Mb/s
- Frame Length: 1500B
- PCA related parameters:
 - CW_{min}: 16
 - CW_{max}: 1024
 - DIFS: 46µs
 - TxOP: 512µs

2 WPANs, 5 Stations per WPAN

PCA: Channel access efficiency does not increase with decreasing number of contending stations

PCA: Channel access efficiency does not increase with decreasing number of contending stations

PCA: Channel access efficiency does not increase with decreasing number of contending stations

omNe

PCA: Channel access efficiency does not increase with decreasing number of contending stations

PCA: Channel access efficiency does not increase with decreasing number of contending stations

Results DRP System Capacity Gain

- PCA reuse depends on random process
- DRP benefits from higher channel (re-)use efficiency

ComNets

Results DRP System Capacity Gain

- PCA reuse depends on random process
- DRP benefits from higher channel (re-)use efficiency

ComNets

Results DRP System Capacity Gain

- PCA reuse depends on random process
- DRP benefits from higher channel (re-)use efficiency

ComNets

Conclusion

- Limited radio resources require efficient MAC protocols
- Enhancement of an often used analytical model to examine PCA in partially overlapping networks
- Comparison shows:
 - PCA suffers from inefficient spatial channel reuse
 - DRP exploits channel reuse capabilities
- DRP exceeds PCA in partially overlapping network scenarios up to factor of 3

Thank you for your attention!

Holger Rosier hor@comnets.rwth-aachen.de

