

Optimization and Performance Analysis of High Speed Mobile Access Networks

Thushara Weerawardane ComNets, University of Bremen, Germany

03.09.2010

7Zi Overview

- Overview of high speed broadband wireless networks
 - Key technologies and architecture
- Main achievements
 - Overview of the completed tasks during the thesis work
- HSPA transport flow control and congestion control
 - Theoretical approach
 - Analytical modeling
 - Performance analysis and results comparison
- Conclusion and outlook

High speed broadband wireless networks

- Universal Mobile Telecommunication System (UMTS)
 - Standardised in 3GPP release 99 and radio interface: WCDMA
 - 64 kbit/sec circuit switched, 384 kbit/sec packet switched services
 - Bearer services, Location services and compatible with GSM
- High Speed Packet Access Networks (HSPA)
 - Downlink: HSDPA, standardised in 3GPP release 5
 - Higher data rates for packet services: 1.8, 3.6, 7.2 and 14 Mbit/sec
 - Key features: Hybrid ARQ, fast packet scheduling, adaptive modulation and coding (AMC)
 - IP Multimedia System (IMS)
 - Uplink: HSUPA, standardised in 3GPP release 6
 - Enhanced uplink data rates up to 5.76 Mbit/sec and
 - Key improvements as in the downlink
- Long Term Evolution (LTE)
 - Standardised in 3GPP release 8:
 - all IP-network, New OFDMA, MIMO based radio interface
 - Not backward compatible with previous UMTS

TZi HSPA architecture (UMTS, HSDPA, HSUPA)

UE: User Equipment VLR: Visitor Location Register CS: Circuit Switch

USIM: Universal Subscriber Identity Module MCS: Mobile service Switching Centre GGSN: Gateway GPRS support Node

SGSN: Serving GPRS Support Node PSTN: Public Switched Telephone Network

ME: Mobile Equipment HLR: Home Location Register EIR: Equipment Identity Register

RNC: Radio Network Controller PS: Packet Switch GMSC: Gateway MSC

UTRAN: UMTS Terrestrial Radio Access Network

1Zi Key achievements

- Design and development of a comprehensive HSPA simulator
 - Implementation of all UTRAN based protocols and end-user protocols
 - Design and implementation of uplink and downlink MAC schedulers
- HSPA transport feature development

Journal of Communications 2009 (IEEE), Academy Publisher

- Adaptive credit-based flow control schemes
- Effective congestion control schemes

Journal Publication, IEEE VTC magazine, December 2009

- Design and development of analytical models
 - A Markov model of congestion control
 - A combined Markov model of flow control and congestion control
- Design and development of a detailed LTE system simulator
 - E-UTRAN and end-user protocols
 - A comprehensive MAC scheduler and IP based transport QOS scheduler

1Zi Key achievements

- Design and development of a comprehensive HSPA simulator
 - All UTRAN based protocols and end-user protocols
 - Design of uplink and downlink MAC schedulers
- HSPA transport feature development
 - A adaptive credit-based flow control scheme and
 - Effective congestion control schemes
- Design and development of analytical models
 - A Markov model of congestion control
 - A combined Markov model of flow control and congestion control
- Design and development of a detailed LTE system simulator
 - E-UTRAN and end-user protocols
 - A comprehensive MAC scheduler and IP based transport QoS scheduler

Complete modelling and analysis

TZi HSDPA FC and CC overview

TZi HSDPA flow control and congestion control

Adaptive credit-based flow control

- Flow control adapts the lub flow to the available throughput at the air interface for individual user flows
- Credit-based flow control
 - Continuous loop control using the Provided Bit Rate (PBR).

$$\overline{PBR}(t) = w \cdot \overline{PBR}(t-1) + (1-w) \cdot PBR(t)$$
 where w is the weight factor

- Buffer management (to optimise the radio utilisation)

Congestion control

- Bursty traffic over the limited transport network causes congestion resulting in many packet losses
- Wastage of scarce radio resources, network resources and degradation of overall end-to-end performance
- Requirement: a proper congestion control mechanism to adapt radio capacity to the available transport capacity adaptively
- Congestion control mechanism includes
 - **Preventive** and **reactive** congestion **detection** schemes and input traffic **control** scheme

TZi MAC-d flow variation in FC and CC

Analytical modeling of FC and CC

Prerequisites

- Two state variables for FC and CC
- Time step in CC is several times longer (5) than the time step in FC
- Maximum level reached under CC depends on starting FC level

Assumptions

- The interarrival times of CIs are independent and identically distributed
- Number of users remains constant (stationary system)
- Constant transmission delay for CA signals
- Per-user buffer occupancy at Node-B is not considered for FC modelling

72i Joint Markov chain

State representation

three non-negative integers, [i, j, k]

- Bit rate level in FC state, i [i=1,2,3,...m]- Bit rate level in CC state, j [j=1,2,3,...m]
- Time steps in CC state, k [k = 1, 2, 3, ...5]

The number of states

The total number of FC states and CC states $= m + \frac{m \cdot (m+1) \cdot 5}{2}$

State transition

FC to FC transitions --->

FC to CC transitions --->

CC to CC transitions ->

CC to FC transitions ->

Markov model: input parameters

Stationary FC state probability matrix, PBRm

$$PBRm = [pbr_j]_{1 \times m}$$
 where $j = 1...m$

(The stationary FC state probability matrix is derived from a trace file which is taken from a dedicated radio simulation.)

The congestion indication arrival probability matrix, A_{ci}

$$A_{ci} = [q_i]_{1 \times (1 + d_{max})}$$

where $q_i = \Pr[\text{exactly } i \text{ CI signals during } \Delta T]; \quad i = 0 \cdots d_{max}$

(This parameters, the CI arrival probability within a step is taken from a trace which is taken from a fast queuing simulator which is designed and developed by the author)

Transition probability calculations

Flow control transition probability matrix

$$P_{fctofc} = [p_{ij}]_{m \times m}$$

$$p_{ij} = \Pr[FC(T + \Delta T) = j \mid FC(T) = i]$$

State transition probability from FC state, i to FC state, j

$$p_{(i,0,0)(j,0,0)} = q_0 p_{ij}$$
 where q_0 is the probability that no CI arrivals occurs within a given FC interval

State transition probability from FC state to CC state

$$p_{(i,0,0)(i,l,1)} + = q_n \qquad \forall \ l = i \times \alpha^n; \quad n = 1 \dots d_{\max}$$
 where $\alpha = 1 - \beta$ and
$$d_{\max} \text{ max number of CI arrivals within a single step}$$

Transition probability calculations cont.

- From CC state to CC state transition probabilities
 - Up: in case of no arrivals

$$p_{(i,j,k)(i,j,k+1)} = q_0$$
 for $k = 1,2,3,4$
 $p_{(i,j,k)(i,j+1,1)} = q_0$ for $k = 5$

Down: due Cl arrivals

$$p_{(i,j,k)(i,l,1)} + = q_n$$
 $\forall l = j \times \alpha^n$; $n = 1...d_{max}$ and $k = 1...5$

From CC state to FC state transition probabilities

 $p_{(i,i,5)(l,0,0)} = q_0 p_{il}$ l is the next FC state and i is the starting FC state before the MAC - d flow enters the CC state

TZi State probabilities and average throughput

Transition probability matrix, with square dimension n_t

$$P = [p_{ijk}]_{n_t \times n_t}$$
 where $i = 1, 2, 3,, n_{fc}$
$$j = 1, 2, 3,, n_{cc}$$

$$k = 1, 2, 3,, n_{st}$$

Stationary state probabilities matrix, π

$$\boldsymbol{\pi} = \boldsymbol{\pi} \cdot \mathbf{P}$$
 Where $\boldsymbol{\pi}$ denotes the state vector, $[\pi_0, \pi_1, \pi_2, \pi_3, \dots, \pi_{n_t}]$

- Average throughput $= bitRateStepSize \times \sum_{i=1}^{n_i} i\pi_i$ bit / sec
 - Example, size of the bit rate level is 33.6 kbps for the given consideration

TZi Results analysis: Simulation and analytical

Parameter configuration

- Common parameters (simulation and analytical)
 - FC cycle time = 100 ms
 - CC AIMD cycle time = 500 ms
 - FC and CC Step size = 33.6 kbps
 - Reduction factor $\beta = 0.25$
 - Safe timer = 80 ms
 - ATM bandwidth = 2Mbps

Simulation specific

- Traffic models: FTP and HTTP traffic models
- User constellation: 18 users, 1 FTP user who downloads a large file during the simulation time and uses the probability distribution used for the analytical model. All other 17 users generate HTTP traffic.
- The simulation duration is 2000 sec and 32 replications are used to determine the confidence interval.

TZi Simulation results: transmission data rate

TZi Simulation results: 30 replications

Average throughputs

CDF of throughputs

Statistical evaluation

Mean = 719.60 kbit/sec Standard deviation = 21.13 kbit/sec

95%confidence interval = [713.05 kbit/sec- 726.16 kbit/sec]

Replications, i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Mean, \overline{Y}_i	713	697	700	688	743	676	740	726	720	689	723	706	734	726	743
Replications, i	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Mean, \overline{Y}_i	763	704	715	724	749	702	742	730	717	681	732	718	729	736	710

Analytical results: input FC stationary state probabilities

tlw@comnets.uni-bremen.de

Probability mass function of the bit rate levels (number of MAC-ds)

FC state stationary probabilities

FC filter formula

$$\overline{PBR}(t) = w \cdot \overline{PBR}(t-1) + (1-w) \cdot PBR(t)$$

w is the weight factor

1Zi Analytical and simulation results comparison

Scenarios

- Analytical model-Q: CI trace from the fast queuing simulator
- Analytical model-S CI trace from the detailed system simulator
- Simulation

	Analytical-S	Analytical-Q
Probability of no CI arrival within a single step, q_0	95.83%	94.74%

Throughput difference (analytical-Q)

- Additional RLC retransmissions (1%,- 0.41%)
- Losses are uniformly distributed
- Effect of TCP the TCP protocol
- All other protocol simplifications and assumption ..

Goodput comparison provide more close agreement

TZi Results comparison cont.

	Throughput	Goodput
Simulation Results	719.65	543.09
Analytical Results-S	722.63	545.38
Analytical Results-Q	748.48	558.10
ideal Transport	-	907.18

Key achievements

- A good match between the analytical model results and the detailed system simulation results
- The FC and CC investigation and analysis can be done faster using the analytical model along with the fast queuing simulator compared to detailed system simulator
 - Detailed system simulator: order of days
 - Analytical model: order of minutes

TZi Conclusion

- Detailed HSPA system simulator has been implemented, tested, validated and used for the performance evaluation.
- ▶ TNL credit-based adaptive flow control and congestion algorithms have been implemented tested, validated and used for end-to-end performance analysis.
 - Overall network performance can be significantly improved by reducing burstiness over the transport network, optimising transport utilisation and effectively minimising congestion in the transport network
 - FC and CC algorithms provides guaranteed end-user QoS while achieving a optimum end-user performance
- ▶ Two analytical models has been implemented, tested, validated and evaluated the performance.
 - A Markov model for modelling congestion control functionality
 - A joint Markov model for modelling FC and CC functionalities

TZi Conclusion

- ▶ There is a good match between analytical model results and the detailed system simulation results.
- A complete faster alternative solution to the timing consuming detailed system simulator can be provided by the analytical mode along with the fast queuing for TNL feature analysis.
- ▶ Detailed LTE system simulator implemented, tested, validated and performance analysed.
 - In addition to general protocol implementation, MAC scheduler and transport QoS packet scheduler have been implemented
 - Effects of transport congestion for network and end-user performance have been studied and analysed

1Zi Outlook

- Proper flow control and congestion control schemes are needed to be proposed and implemented in the LTE UTRAN in order to protect transport packet losses due to congestion
 - UL congestion control and load balancing for non-GBR bearers
 - DL congestion handling mainly for non-GBR bearers
 - Effective admission control mechanism for GBR bearers
- There is a clear requirement of cross layer functionalities between Radio MAC scheduler and transport scheduler for effective QoS management

Thank you very much!

Any Questions?

TZi Design overview of the queuing simulator

TZi Fast queuing simulator

- A fast queuing simulator is implementation using CNCL library
- Key assumptions and simplifications
 - Traffic sources are modelled without complex TCP protocol functionality
 - Transport loss ratio set to the maximum value 1% and losses are uniformly distributed. (RLC able to recover the loss before TCP notices)
 - The CI arrival process assumed as a Poisson arrival

FC Queue management

TZi Flow control and congestion control cont.

Joint Markov chain: state diagram

72i Markov model: states

- Each state is identified by three non-negative integers, [i, j, k]
 - Bit rate level in the FC state, i [i = 1, 2, 3, ... m]
 - Bit rate level in the CC state, j [j = 1, 2, 3, ... m]
 - "j=0" indicates the state within FC state
 - Time step in CC state, k = [k = 1, 2, 3, ...5]
 - Again "k=0" indicates the state within FC state
- Number of states in Markov model
 - Total number of FC states = m
 - where CC state finite sequences Total number of CC states = $\frac{m \cdot (m+1) \cdot 5}{2}$, where CC state finite sequence $5,10,15,20,\ldots,5m \Rightarrow (5n)_{n=1}^{m}$
 - The total number of FC states and CC states: $m + \frac{m \cdot (m+1) \cdot 5}{2}$

For example, if m is 48 (eff BW/step = $2.0*10^6*0.8/33.6*10^3$), then the total number of states is 5928.

TZi Simulation results analysis

Replication mean calculation

Replication 1:
$$Y_1, Y_2, Y_3, ... Y_m \longrightarrow \overline{Y}_1$$

Replication 2:
$$Y_{m+1}, Y_{m+2}, Y_{m+3}, ... Y_{2m} ----> \overline{Y}_2$$

Replication 3:
$$Y_{2m+1}, Y_{2m+2}, Y_{2m+3}, ... Y_{3m} ----> \overline{Y}_3$$

Replication n:
$$Y_{(n-1)m+1}, Y_{(n-1)m+2}, Y_{(n-1)m+3}, ... Y_{nm} ----> \overline{Y}_n$$

Mean:
$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} \overline{Y}_{i}$$

Variance:
$$V = \frac{1}{n-1} \sum_{i=1}^{n} (\overline{Y} - \overline{Y}_i)^2$$

Confidence interval =
$$\overline{Y} \pm (t_{\alpha/2,n-1} \times \sqrt{\frac{V}{n}})$$

where $100(1-\alpha)\%$ CI

where $t_{\alpha/2. n-1}$ is taken from Student t-distribution. "n-1" is the degree of freedom and 1- α is the confidence level.

Statistical evaluation

Replications, i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Mean, \overline{Y}_i	713	697	700	688	743	676	740	726	720	689	723	706	734	726	743
Replications, i	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Mean, \overline{Y}_i	763	704	715	724	749	702	742	730	717	681	732	718	729	736	710

- Mean = 719.60 kbit/sec
- Standard deviation = 21.13 kbit/sec
- 95%confidence interval = [713.05 kbit/sec- 726.16 kbit/sec]

TZi Analytical results

- Analytical model-Q
 - CI trace from the fast queuing simulator
- Analytical model-S
 - CI trace from the detailed system simulator

	Analytical-S	Analytical-Q
Probability of no CI arrival within a single step, q_0	95.83%	94.74%

TZi Results comparison

Simulation

Mean throughput = 719.65 kbit/sec 95% CI (713.05 kbps, 726.16 kbit/sec)

There are many issues for this difference during this analysis

- Fast queuing simulator analysis had higher number of RLC retransmissions compared to detailed system simulator and it leads to a higher throughput for fast queuing simulator (loss probability of the detailed system simulator is 0.41% whereas it is 1% for the fast queuing simulator. Additional overhead is ~6kbit/sec.)
- There are other effects which cannot be quantified as above such as
 - Losses are uniformly distributed
 - Effect of TCP slow start etc..
- And all other protocol effects and assumptions

Goodput comparison provide more close agreement

72i Joint Markov chain

State representation

three non-negative integers, [i, j, k]

- Bit rate level in FC state, $i = [i = 1, 2, 3, \dots m]$
- Bit rate level in CC state, j = [j = 1, 2, 3, ... m]
- Time steps in CC state, k = [k = 1, 2, 3, ...5]

The number of states

The total number of FC states $= m + \frac{m \cdot (m+1) \cdot 5}{2}$

State transition

FC to FC transitions --->

FC to CC transitions ---

CC to CC transitions ->

CC to FC transitions -->

Input Parameters

Stationary FC state prob. matrix,

$$PBRm = [pbr_j]_{1 \times m}$$
 where $j = 1...m$

CI arrival prob. matrix,

 $A_{ci} = [q_i]_{1 \times (1 + d_{max})}$ where

 $q_i = \Pr[\text{exactly } i \text{ CI signals during } \Delta T];$

 $i = 0 \cdots d_{max}$

